If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.25x^2-17=0
a = 1.25; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·1.25·(-17)
Δ = 85
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{85}}{2*1.25}=\frac{0-\sqrt{85}}{2.5} =-\frac{\sqrt{}}{2.5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{85}}{2*1.25}=\frac{0+\sqrt{85}}{2.5} =\frac{\sqrt{}}{2.5} $
| −69=7y−6 | | 7t+11=60 | | -5r2=-40 | | 2x=-4x-3 | | 72x=9x | | 10x+2(x+3)=8x-3 | | -10+5x=15+30x | | 9x–4x=55 | | 4+2x+1=3x+2 | | 5(x-8)-12=16x-96 | | 3m-28=10m | | (X-4)=(2x+10) | | 8x-9=4x-8 | | (×-4)=(2x+10) | | 6^x+1=7776^-4 | | k2=20 | | 3(g-7)=12 | | 3x^2-9x=36 | | 2x6−19=−9 | | -5x-5=5x-85 | | (9x-23)°+(7x+9)°=180 | | 7x-10=-40+4x | | 30+5x+10/2=2x-3 | | k6+5=21 | | -4x+8=x+68 | | T^2+8x+6=0 | | 5(x+5)-3x=20+7x | | 45=22+xx= | | 15^2=9(3x+10) | | -6x+6=-8-4x | | 15^2=9(3x+9) | | -32=2x+x+4 |